a maths solution
The position to term rule in mathematics refers to a method used to identify the terms of a sequence based on their position or index. For example, in an arithmetic sequence, the nth term can be expressed as a linear function of n, typically in the form (a_n = a + (n-1)d), where (a) is the first term and (d) is the common difference. This rule helps in finding specific terms without listing the entire sequence. It's also applicable in other types of sequences, such as geometric sequences, where the nth term is determined by a different formula.
1254
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
0.5n(n+1)
You can't figure out the rule for a sequence from a single number.
In the study of sequences, given a number n, the position to term rule tells you how the nth term of the sequence is calculated.
The nth term is 4n - 3
The nth term = 9n-2
whats the nth term for 9,12,17,24,33
If the term number is n, then the nth term is 10(n-1) +8.
6n-5 is the nth term of this sequence
1254
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
0.5n(n+1)
The nth term is: 3n+2 and so the next number will be 20
say for example the question was 4n + 3 You times the poisition by 4 - eg. position 4 - 4x4 = 16 + 3 = 19